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The interracial tension of a liquid-liquid interface in the critical region has been 
obtained as a function of the surfactant concentration on the basis of the 
Landau-Ginzburg model for critical phenomena. It is shown that surfactants 
may reduce significantly the interracial tension in addition to the well-known 
near-critical reduction. 
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1. INTRODUCTION 

The problem of reducing the interfacial tension of a liquid-liquid (e.g., 
oil-water) interface is important in a great variety of practical applications. 
There exist two main different methods to reduce the interfacial tension, 
namely, either by going close to the critical consolute point or by adding 
surface-active agents to the system. 

According to the classical theory of critical phenomena, the free energy 
F has, in the critical region, a Landau-Ginzburg expansion of the form [ 1 ] 

F=(kBT/r3) fdV(~zqoZ+u~o4+blrZ(Vqo)2+ . . . ) + F  0 (1) 

where ~o is the order parameter whose average value is proportional to the 
difference of the densities (or concentrations) of the coexisting phases; 

= ( T - T c ) / T  c is the reduced deviation of temperature T from the critical 
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temperature To; V is the volume; kB is Boltzmann's constant; r 0 is the 
characteristic molecular size (in a simple case ro 3 is the molecular volume); 
e, u, and bl are system-dependent constants, and Fo is the "regular part" 
of the free energy. 

Asymptotically close to the critical temperature the interfacial tension 
a behaves as [-2]: 

a = (1/3)(ub~) 1/2 (0 3 oc ]z[ 3/2 (2) 

where ~0o is the average value of q~. 
The addition of surfactant molecules to the system provides an 

alternative mechanism for decreasing the interfacial tension. We have 
considered the case where these two effects are combined. It allows us to 
use the Landau-Ginzburg expansion for the free-energy density as well as 
many simplifying assumptions which become valid in the critical region. As 
a result, we have obtained a rather simple explicit expression for the 
interfacial tension. 

2. F O R M U L A T I O N  OF THE M O D E L  

We consider a ternary system, consisting of water (1), oil (2), and 
surfactant molecules. "Oil" means any hydrocarbon or even a mixture of 
hydrocarbons and alcohols. The corresponding composition variables are 
denoted Cl, c2, and c and may be mole fractions, densities, or volume frac- 
tions. In the following we consider the latter case, to account partially for 
excluded volume effects, but nevertheless, we use the term "concentration" 
for simplicity. We assume that both the oil and the water molecules are 
characterized by the same size ro, while the surfactant molecule is N times 
longer (1-- Nro), where N is large compared to unity but not so large as in 
the case of polymers (typically N -  ~ 10-20). We neglect compressibility 
effects, so that 

Cl--}-C2 + C =  I 

It should be noted that in this case the system can be described with the 
help of two independent composition variables, for example, p = c 2 - c l  
and c. 

For  small values of p the excess free energy of the system under 
consideration may be written in the Landau-Ginzburg-like form [-3] 

Fo = (kB T/r 3) f dV[(1 - c) ln(1 - c) + ( c /N) In  c F- -  (1~2)alp 2 (1/12)p 4 + l 

+ ( 1 / 2 ) c p 2 + ( 1 / 2 ) a 2 c 2 + e p C + b l r ~ ( V p ) 2 + d l l 2 ( V c ) 2 +  - . . ]  (3) 
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Here al ,  a2, and e are related to intermolecular interaction constant Z~ 
(oil-surfactant), g2 (water-surfactant), and Z~2 (oil-water): 

al=z12/2- -1;  a2=Z12/2--ZI--Z2;  e=Z1--Z2 

bl and dl are dimensionless coefficients. We neglect all higher-order terms 
in p and c in this expansion. 

In the following, we neglect for the sake of simplicity the asymmetric 
term proportional to e in Eq. (3) allowing for the solubility of surfactant 
to be the same in both phases (oil-rich and water-rich). 

Note that a~ > 0 and that the system is in the two-phase region below 
the critical temperature T c. To obtain the coexistence curve and, hence, the 
value of To, we may use the following conditions: 

#~1) =#p(2)., H( I )=  H(2); #~1)= #~2~ 

where 

H = F -  #pp - #cc; #o = OF/Oc; #p = OF/~p 

the superscripts (1) and (2) denote two coexisting phases. These conditions 
are equivalent to the quality of the three chemical potentials. Here #p and 
#p are the so-called exchange potentials and H is the osmotic pressure. 
From Eq. (3) we obtain 

_p(1)= + p(2) = p0, p ~ = 3 ( a l _ c o ) ,  C(1)=C(2)=C0 (4) 

where Po and Co are the equilibrium values of p and c in the bulk phases. 
At the critical point p2= 0. In the absence of the surfactant (Co=0) 
p~ oc a 1 oc IT[ and expansion given by Eq. (3) is equivalent to expansion 
given by Eq. (1). 

In the homogeneous system (one-phase region), all concentrations are 
independent of position if the thermal fluctuations are neglected. This one- 
phase region is situated above the critical temperature Tr Below Tr where 
demixing into oil-rich and water-rich domains takes place, the system 
becomes inhomogeneous and the specificity of amphiphillic molecules 
manifests itself in the tendency of "sticking" to oil-water interfaces with 
the corresponding orientational ordering, following the geometry of the 
surface. Both these specific features of surfactant molecules are readily 
accounted for with the help of a vector order parameter, coupled with the 
density (or concentration) gradient of the solvent [-4]. Such coupling leads 
in the first approximation to the extra interaction term in Eq. (3), which 
reduces the free energy: 

= (kB r/rg) f (-- 2t2c(Vp) 2) dV Fi., (S) 

where 2 > 0 is a dimensionless coupling constant. 
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This particular interaction enabled us to describe self-assembly pro- 
cesses in surfactant solutions [-4] and proved to be useful in getting new 
insight into microemulgation and micellization problems. In that case, the 
inhomogeneities of a solution (gradients of "density") were associated with 
fluctuations, while in the case under consideration we relate the gradient 
terms to the macroscopic interface region. 

The interfacial tension a is defined as the difference per unit area of the 
interface between the actual total free energy of the system and that which 
it would have if there were no interface: 

a = f d z { f E p ( z ) ,  c(z)] - f ( P o ,  Co) - 8 f /Spo(p  - Po) - 8f /Sco(c - Co)} 

f 
oo 

=(kBT/r3o)  d z W ( p , C ,  pz,  Cz) (6) 
--oo 

Here f is the free energy density, while Pz and c z are the gradients in the 
z-direction perpendicular to the surface. 

The dimensionless excess free energy density W satisfies the Euler-  
Lagrange minimization equations: 

~p dz = 0 
(7) 

~?W d ( ~ c ~  = 0 
8c dz  

The relations given by Eq. (7) allow one to determine composition profiles 
p( z )  and c(z) ,  as well as to calculate a. 

Defining 

q(z)  = p ( z ) /po  

we obtain from Eqs. (3), (5), and (7) 

W =  (1 - c) ln[(1 - c)/(1 - c0)] + ( c / N )  ln(c/co)  + (az /Z)(e  - Co) 2 

2 2 2 2 + (p~/2)(c  - -  c 0 ) ( ~  2 - -  1) Ji- (p~/12)(r/2 -- 1 )2 + (bl -- 2N C)roPoq ~ 

+dll%~ (8) 

( l /N)  ln(c/co)  - ln[(1 - c)/(1 - Co)] + a2(c --, Co) + (pZ/2)(q2 - 1) - 212p2q~ 

= 2dllZcee (9)  

( p ~ / 3 ) ~ l ( # z - 1 ) + ( C - - C o ) ~ l = Z ( b l - - 2 N 2 c ) r 2 o ~ z z - 2 1 2 c z ~ z  (I0) 

where czz = 82c/~z 2 and t/= = 8Ztl/OZ 2. 
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To deduce the main features of the dependence of o on Co, we shall 
simplify Eqs. (9) and (10) as much as possible. Specifically, we put 

c=-~0 (11) 

For small values of the average surfactant concentration Co ~ 1, keeping in 
mind that, at least in the critical region, the local concentration c(z )  should 
not differ much from Co, we may rewrite Eqs. (8)-(10) in the following 
form: 

W ~ (ao/2 )(c - Co) 2 + (p2/2) (c  - Co)(~l 2 - 1) + (p4/12)(t/2 - 1) 2 

+ [ b  1 2 2 2 2 - e 2 N  ] r0P0r/~ (12) 

ao(c Co)+(p~/Z)(t/2-1) 2 2 2 --  - - 2 l  pO~/z = 0 ( 1 3 )  

(p2/3) ~/(~2_ 1)+ ( C - C o ) r l = 2 b l r ~ 1 = - 2 1 2 c z r l .  (14) 

where 

a o = a 2 +  1 / (1 -Co)+  1 / N o ~ - a 2 +  1 +  1 /Nc  o 

From Eq. (13) we obtain 

c -  e0 = (pa/ac)  [(1 - , 2 ) / 2  + ,~12~3 

c: = (p~/ac) ~/:(2,~/2q=- 1) 

(15) 

( 1 6 )  

(17) 

Substituting Eqs. (16) and (17) into Eq. (14), we obtain 

(po2/3) r/(r/2 - 1) + q(p2/ac)[ (1  - -  I"/2)/2 + fi/Zr/z 2 ] 

= 2bl r2 r/z~ - 2ill 2Co t/z: - fll2(po/ac) r/Z(2fi/2qzz - 1 ) (18) 

The solution of Eq. (18) yields the interfacial profile t/(z), which in turn, 
after substitution into Eqs. (16) and (6), gives an expression for the interra- 
cial tension a in the approximation considered. Unfortunately Eq. (18) can- 
not be solved analytically. To obtain qualitative insight into the problem, 

2 2 we omit all higher-order terms proportional to p0t/z in Eq. (18). Then the 
solution of Eq. (18) is reduced to a traditional "kink" approximation: 

= th(z /~)  (19) 

where ~ plays the role of correlation length, which determines the thickness 
of the interface: 

~2 = 12~1 r~/(p2gt) (20) 
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with 

~1 = bl - 2N2(co + p~/2a~), ~t = 1 - 3/2a~ (21) 

As follows from Eq. (20) the correlation length r diverges when Po tends 
to zero at the critical point. Since at Nco< 1, ac ~- 1/Nco, the factor 
~ - 1 - 3 N c o / 2 .  Thus at po=constant  the larger N, the thicker the 
interface. The factor fi is proportional to the effective coefficient of the 
fourth-power term in the Landau expansion of the free energy. Indeed, 
substituting Eqs. (16) and (17) into Eq. (12) yields 

2 2 2 W =  (1/12)(1 -- 3/2ac) p4(1 - rl2) 2 + blroPorlz (22) 

At sufficiently large values of Co, bl and ~ may approach zero. The point 
where b l = 0  is called the Lifshitz point [5], and that with f i = 0  is the 
tricritical point [2]. To consider these two cases one needs to take the 
higher-order terms in the expansion given by Eq. (3) into account. The 
specific character of the surfactant manifests itself in the reduction of 
42 oc b~(co) resulting from the tendency of surfactant molecules to order at 
the interface and, thus, to pull oil and water molecules closer to the 
interface. 

Substituting Eq. (19) into Eq. (6) we arrive at the following expression 
for interfacial tension: 

a = (4/3u2)(kB Tire) p3(fibl)'/2 (23) 

As can be seen from Eq. (23) there exist two mechanisms which reduce the 
interfacial tension: the approach to the critical point or the nearness of the 
tricritical point and the reduction of the effective square-gradient coefficient 
~1. The first mechanism has been discussed in the literature [3, 6] and can 
be observed in principle in any ternary solution, while the second 
mechanism is due only to the presence of surfactant. When the bulk 
surfactant concentration Co is sufficiently small, so that Nco ~ 1, we may 
put a~ 1 =Nco  according to Eq. (15). One can then write 

a(Co) = (4/31/2)(kn T/r 2) po3{(1 - 3Nco/2)[bl  - 2N2c0(1 + Np~/2)] }1/2 (24) 

As can be seen from Eq. (24) the reduction of a(c0) as small Co results 
mainly from the bl(co) factor if the coupling constant 2 is sufficiently large. 
The typical behavior of a(Co) is presented in Fig. 1. The parameters of 
Eq. (24) are chosen as follows: 

N =  10, po = [-3(0.01 -Co)]  1/2 
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Fig. 1. Interfacial tension a (normalized to its value ~0 at c o = 0) as 
a function of the surfactant concentration Co according to Eq. (24). 
The dashed curve corresponds to the absence of a specific coupling 
between amphiphiles and interface (2 = 0); curve 1 corresponds to a 
moderate coupling (2 = 1); curve 2 corresponds to a strong coupling 
(2 = 10); curve 3 corresponds to the coupling constant, depending on 
the local concentration c(r); and CP is the critical point. 

Thus, the critical surfactant concentra t ion is 0.01. Curves 1 and 2 
correspond to a moderate  (2 = 1) and a strong (2 = 10) coupling, respec- 
tively. In the latter case, the Lifshitz point  is situated below the critical 
point. Curve 3 corresponds to the coupling constant,  depending on the 
local concentra t ion c(r). In this case the "phase transit ion" at the interface 
results in the discontinuity of the slope of the dependence a(Co). The variety 
of such transitions was demonst ra ted  and studied in detail in Ref. 7. 

In the vicinity of  the Lifshitz point  ~1 = 0, Eq. (24) for the interracial 
tension is not  valid anymore.  To obtain the concentra t ion dependence of  o- 
in this region, one must  take the higher-order terms in the gradient expan- 
sion given by Eq. (3) into account.  The result of the corresponding evalua- 
t ion is shown by the dot ted curves in Fig. 1. Considerat ion of the case 
T)I < 0 in more  detail will be published elsewhere. 

3. C O N C L U S I O N  

On  the basis of  the L a n d a u - G i n z b u r g  model  for the free energy of a 
ternary o i l -water-surfac tant  system below the critical consolute point  and 
using the simple model  for the interaction between amphiphillic molecules 
and density inhomogeneities,  we have elucidated the explicit dependence of 
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the oi l -water  interface tension a on the surfactant concentra t ion Co. The 
dependence of  a on Co in a near-critical solution is strongly affected by the 
interplay of two different mechanisms, bo th  leading to a reduction of the 
interfacial tension with an increase in the surfactant concentration.  The first 
mechanism is the well-known critical reduction resulting in vanishing the 
interfacial tension at the critical point. The second can be called the 
"Lifshitz-point" mechanism leading to the renormalizat ion of the gradient- 
term coefficient in the L a n d a u - G i n z b u r g  expansion of  the free energy. We 
believe that  at low surfactant concentrat ions,  the main role is played by the 
latter of these mechanisms. 
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